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The Trimmed-Haplotype Test for Linkage Disequilibrium
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Single-marker linkage-disequilibrium (LD) methods cannot fully describe disequilibrium in an entire chromosomal
region surrounding a disease allele. With the advent of myriad tightly linked microsatellite markers, we have an
opportunity to extend LD analysis from single markers to multiple-marker haplotypes. Haplotype analysis has
increased statistical power to disclose the presence of a disease locus in situations where it correctly reflects the
historical process involved. For maximum efficiency, evidence of LD ought to come not just from a single haplotype,
which may well be rare, but in addition from many similar haplotypes that could have descended from the same
ancestral founder but have been trimmed in succeeding generations. We present such an analysis, called the
“trimmed-haplotype method.” We focus on chromosomal regions that are small enough that disequilibrium in
significant portions of them may have been preserved in some pedigrees and yet that contain enough markers to
minimize coincidental occurrence of the haplotype in the absence of a disease allele: perhaps regions 1–2 cM in
length. In general, we could have no idea what haplotype an ancestral founder carried generations ago, nor do we
usually have a precise chromosomal location for the disease-susceptibility locus. Therefore, we must search through
all possible haplotypes surrounding multiple locations. Since such repeated testing obliterates the sampling distri-
bution of the test, we employ bootstrap methods to calculate significance levels. Trimmed-haplotype analysis is
performed on family data in which genotypes have been assembled into haplotypes. It can be applied either to
conventional parent–affected-offspring triads or to multiplex pedigrees. We present a method for summarizing the
LD evidence, in any pedigree, that can be employed in trimmed-haplotype analysis as well as in other methods.

Introduction

A major theoretical problem in gene hunting concerns
fine-scale localization of disease loci in chromosomal
regions where linkage has previously been established
(e.g., Terwilliger 1995; Xiong and Guo 1997; Lazzeroni
1998). Genomewide scans by many investigators have
uncovered regions positive for linkage to schizophrenia,
bipolar disorder, and several other complex disorders,
but positive regions typically extend over as much as 40
cM (e.g., Stine et al. 1995; Straub et al. 1995; Zouali et
al. 1997). The cost of the final stage in identification of
a specific disease locus is proportional to the size of the
region to which we can confine it beforehand. Since link-
age analysis has a limited ability to localize a disease-
susceptibility locus even for simple Mendelian disorders
(Boehnke 1994), a problem compounded by the prop-
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erties of complex traits, we turn to methods, such as
linkage-disequilibrium (LD) analysis, that are potentially
more precise.

In the present article, we propose a statistical test for
LD that is based on commonly held notions of an an-
cestral-founder haplotype and its breakup over time
(Devlin and Risch 1995). Several recent studies have
considered the entire cluster of partly related, partly
unrelated haplotypes that would result from historical
recombination and mutation in markers surrounding a
disease-susceptibility allele (Claton and Jones 1999;
McPeek and Strahs 1999). We assume that, at some
time past, a mutation that causes disease susceptibility
occurred or was introduced into the population. We
identify the mutation as allele D of the disease locus,
with normal allele d. In the ancestral founder, allele D
resided in the midst of a unique chromosome, but, in
subsequent generations, the surrounding chromosome
has been altered, either by recombination or by marker
mutation. Under what we call the “ancestral hypothe-
sis,” a genetic sample contains a cluster of these ances-
trally derived haplotypes, each containing the disease
allele surrounded by a fragment of the corresponding
ancestral chromosome. The null hypothesis holds that
there is no such cluster of descendant haplotypes. There-
fore, certain multiple-marker haplotypes, most of which
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Table 1

Trimmed-Haplotype Table with a Sample of Transmissions and Nontransmissions

CATEGORY

HAPLOTYPE
TOTAL

OBSERVED TRANSMISSION NONTRANSMISSION EXCESSA B Dis C E F

1 1 1 D 1 1 1 11 9 2 7
2 1 1 D 1 1 0 12 8 4 4
3 0 1 D 1 1 1 15 10 5 5
4 0 1 D 1 1 0 12 5 7 �2
5 1 1 D 1 0 X 25 15 10 5
6 X 0 D 1 1 1 23 11 12 �1
7 0 1 D 1 0 X 23 10 13 �3
8 1 1 D 0 X X 40 24 16 8
9 X 0 D 1 1 0 29 15 14 1
10 0 1 D 0 X X 121 57 64 �7
11 X 0 D 1 0 X 119 58 61 �3
12 X 0 D 0 X X 570 278 292 �14

NOTE.—A “1” indicates an allele shared with the ancestral haplotype, a “0” indicates any allele different from the
ancestral allele, “D” indicates the disease allele, and “X” indicates all possible alleles, including the ancestral allele.

have very low frequency under the null hypothesis, may
be much more common in the presence of allele D. We
exploit this difference in a trimmed-haplotype test.

Trimmed-Haplotype Table

In the trimmed-haplotype method, we sort all pedigree-
founder haplotypes of the sample into a “trimmed-hap-
lotype table” that contains an exhaustive and mutually
exclusive set of haplotype categories, with the ancestral
haplotype at its head and with other categories ranked
in decreasing order of similarity to the ancestral hap-
lotype (recall that a pedigree founder is an individual
without recorded parents or siblings in the pedigree [Ott
1991] and note the distinction between pedigree foun-
ders and the ancestral founder of the disease allele). Sim-
ilar tables are commonly presented by molecular biol-
ogists, with various graphical devices used to display
regions of ancestral identity (e.g., Höglund et al. 1995).
The markers employed span a region suspected to con-
tain a disease allele, with particular marker alleles de-
fining a putative ancestral haplotype. All haplotypes of
the sample are classified by recombinations and marker
mutations that would have altered them from the orig-
inal ancestral state.

Consider a specific example of a five-marker region
with the disease locus situated as in table 1. The disease
locus is called “Dis,” whereas A–F are marker loci. Al-
though actual allele numbers would be specific to the
ancestral haplotype, for purposes of classification in
the trimmed-haplotype table, a “1” indicates an allele
shared with the ancestral haplotype and a “0” repre-
sents any allele that is different from the ancestral allele
at the corresponding marker. Thus, in this notation the
ancestral haplotype itself is 1 1 D 1 1 1, and a trim-
med haplotype resulting from a single recombination

between markers A and B falls into the category
0 1 D 1 1 1. Several haplotypes, differing only in the
first allele, might share this category. Note that a re-
combination near the disease locus renders the markers
that are farther away irrelevant. Even if they display
the ancestral allele, they could not have descended from
the ancestral haplotype (we neglect marker mutation,
for the moment). For example, a recombination be-
tween markers C and E would produce haplotypes in
category 1 1 D 1 0 X, where X represents all possible
alleles, including the ancestral allele. The final category
of the trimmed-haplotype table is X 0 D 0 X X, usually
the largest category, which represents all those haplo-
types that bear minimal resemblance to the ancestral
haplotype. These haplotypes may have been trimmed
so closely to the disease locus that even their flanking
markers have been altered; more likely, they did not
descend from the ancestral founder at all. Every hap-
lotype in the sample is assigned to a unique trimmed-
haplotype category, regardless of whether it is actually
descended from the ancestral founder.

Markers in a region of any size can be assigned to a
trimmed-haplotype table, and the disease locus can be
tested in any location among them. Each situation yields
a somewhat different table of trimmed haplotypes. A
single trimmed-haplotype table provides for only one
putative ancestral haplotype, but the trimmed-haplo-
type test is designed to be repeated for all haplotypes
of each combination of markers, as well as for multiple
locations of the putative disease-susceptibility locus.

Table 1 shows the pedigree-founder haplotypes from
an artificial sample of 250 parent–affected-offspring tri-
ads used in the familiar transmission/disequilibrium test
(TDT), distributed into the trimmed-haplotype table by
transmissions and nontransmissions (Spielman et al.
1993). There are four haplotypes from each triad, two
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transmitted and two nontransmitted. Category obser-
vations tend to increase as we move down the trimmed-
haplotype table, because multiple haplotypes are in-
cluded in each of the lower categories. In the example,
excess transmissions, which constitute the evidence of
LD, are not overwhelming in any category, and a stan-
dard TDT test would not be significant. Nonetheless,
the trend of excess transmissions near the top of the
table and excess nontransmissions toward the bottom
is unmistakable. To quantify this trend, we need a func-
tion that relates evidence of LD to trimmed-haplotype
category.

Trimming Probabilities

Under the ancestral hypothesis, haplotypes appear in a
high-density sample because of the disease allele they
contain. Our objective is to construct a predicted fre-
quency distribution for these haplotypes. Given the
location of the disease locus, we can calculate the prob-
ability that trimming the ancestral chromosome pro-
duces a haplotype fragment of a certain size. The trim-
ming probability of a haplotype is a function of its
similarity to the ancestral haplotype, of elapsed time
since the ancestral founding event, and of genetic-linkage
distances to the markers. The nearest recombination on
each side of the disease locus determines the size of the
trimmed haplotype; recombinations farther away are ir-
relevant. Let us begin with a single generation, consid-
ering only one side of the disease locus. Except for link-
age interference, the number of crossovers between two
locations constitutes a Poisson process with a rate pa-
rameter of 1 recombination per Morgan. The distribu-
tion of the nearest recombination to the disease locus is
thus

Pr(nearest recombination ≤ w) = 1 � exp (�w) , (1)

where w is distance measured in Morgans. The proba-
bility that the nearest recombination occurred between
two marker locations, w1 nearer and w2 farther from
the disease-susceptibility locus, is Pr(nearest between

Pr(nearest between w and w )1 2

= Pr(nearest 1 w )Pr(nearest ≤ w Fnearest 1 w ) .1 2 1

Because of the Poisson property,

Pr(nearest 1 w Fnearest 1 w )2 1

= Pr(nearest 1 w )/Pr(nearest 1 w )2 1

= exp (�w � w ) ,2 1

so that

Pr(nearest between w and w )1 2

= exp (�w )[1 � exp (�w � w )]1 2 1

= exp (�w ) � exp (�w ) .1 2

In the next generation, recombination again occurs
at random, without regard to previous recombinations.
Therefore, the distribution of recombinations occurring
in two generations has the same form but double the
rate. Linkage interference does not apply in different
generations, so that, in multiple generations, its effect
rapidly disappears. Thus, for g generations, the rate is
simply g times the single-generation rate,

Pr(nearest between w and w after g generations)1 2

= exp (�gw ) � exp (�gw ) .1 2

(2)

Recombinations occur on both sides of the disease
locus. Although restricted by linkage interference in a
single generation, recombinations on the two sides are
statistically independent in different generations, so,
over many generations, the sides are nearly independent.
Thus, the joint probability of distances to the nearest
recombinant marker on either side of the disease locus
is approximately their product.

Confounding Effect of Homozygosity

We do not observe crossovers, only the resulting hap-
lotypes. Because of this, recombination becomes con-
founded with homozygosity in the parent. To see how,
let us calculate trimming probabilities in a single gen-
eration for the ancestral allele a, at marker M that is
distance w from the disease locus, Dis. In the trimmed-
haplotype notation introduced above, preservation of
allele a would yield a haplotype included in category
D 1, and nonpreservation would fall into category D 0.
For haplotype D 1 to have descended from a parent who
carried allele a, either no recombination occurred be-
tween Dis and M, or a recombination did occur but the
parent was homozygous at M. The probability that the
parent was homozygous, given that he/she carried allele
a, is simply the allele frequency q(a). Thus, Pr(D1) =

. Without historical infor-exp (�w) � [1 � exp (�w)]q(a)
mation about allele frequencies, we must assume that
q(a) has remained approximately the same since the time
of the ancestral founder. For haplotype D 0 to have
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descended from a D 1 parent, a recombination must have
occurred in the interval, and the parent must have been
heterozygous at M. Thus, Pr(D0) = [1 � exp (�w)][1 �

. Note that Pr(D0) and Pr(D1) sum to unity,q(a)]
because they constitute the only possibilities in this
situation.

We can calculate trimming probabilities for any num-
ber of markers by making a slight change in notation.
Consider a haplotype of n markers, M1–Mn, with an-
cestral alleles a1–an, whose frequencies are q(a1)–q(an),
respectively. Let us write Pr(k,n) for the frequency of a
haplotype of n markers with k preserved ancestral
markers. For this haplotype to be inherited from a par-
ent carrying the entire ancestral haplotype, two con-
ditions must be met. First, the parent’s marker, Mk�1,
must be heterozygous, for a recombination between wk

and wk�1 to be disclosed. Second, it is possible that there
could be a recombination nearer to the disease-suscep-
tibility locus than wk, but, if so, then all the markers
from Mk to the nearest recombination must be homo-
zygous. Thus,

k�1

Pr(k,n) = [(1 � q(a )] Pr(nearest�k�1
i=1

between w and w )Pr(a ,...a ) .i�1 i i k

(3)

To ensure that the first and last terms are correct, we
define , , and . Althoughw = 0 w = � q (a ) = 00 n�1 n�1

markers Mi to Mk, which are confined to a small chro-
mosomal region, may well not be in linkage equilibrium,
if the estimation of haplotype frequencies is prob-
lematical, we may need to substitute Pr(a ,...a ) ≈i k

kP q(a ).j=i j

Intervals with Multiple Nearest Recombinations

Equation (3) applies to a single generation, in which
multiple recombinations in small intervals are prevented
by linkage interference. However, over many genera-
tions, the probability that several other recombinations
occur in the same marker interval with the nearest re-
combination to the disease locus may not be negligible.
Nonetheless, a simple inductive argument shows that the
interaction of heterozygosity, homozygosity, and resto-
ration of the ancestral allele by subsequent recombina-
tions just balances, to retain the same probability of
trimming and preservation, regardless of the number of
recombinations in the interval.

Let us again consider the case of Dis and only one
marker M. Suppose that, after g generations in which
there have been m recombinations in the interval w, the
alternative probabilities are

Pr(D0,g) = [1 � exp (�gw)][1 � q(a)] (4)

and

Pr(D1,g) = exp (�gw) � [1 � exp (�gw)]q(a) . (5)

At the next generation, haplotype D 0 would be inher-
ited from a D 0 parent in absence of recombination. In
addition, if a recombination did occur, any parent,
D d0 or D 1, would produce a D 0 offspring if the
parent carried an allele other than a on the opposite
chromosome. Thus,

Pr(D0,g � 1) = Pr(no recombination)Pr(D0,g)

�Pr(recombination)[1 � q(a)]

= exp (�w)[1 � exp (�gw)][1 � q(a)]

�[1 � exp (�w)][1 � q(a)] ,

so that, reshuffling a bit, Pr(D0,g � 1) = {1 � exp [�
. This is the form of equation (4)(g � 1)w]} [1 � q(a)]

with gw replaced by . Likewise, D 1 would be(g � 1)w
produced if a recombination occurred in any parent
who happened to carry allele a on the other chromo-
some.

Pr(D1,g � 1) = Pr(no recombination)Pr(D1,g)

� Pr(recombination)q(a)

[ ]= exp �(g � 1)w

[ ]� 1 � exp �(g � 1)w q(a) .{ }

This is the form of equation (5) with gw replaced by
. Note that the number of recombinations, m,(g � 1)w

does not appear in these formulas. The argument can
easily be extended to chromosomal regions of all sizes,
and, in each case, the number of recombinations in the
interval containing the nearest recombination is
irrelevant.

Thus, formula (3) applies to the case in which mul-
tiple nearest recombinations have occurred in the same
interval but in different generations.

Historical Changes in Trimmed-Haplotype
Frequencies

Over time, a distribution of trimmed haplotypes devel-
ops because of the breakup of the ancestral haplotype
by recombinations. As generations pass, the distribution
shifts toward categories that are less similar to the an-
cestral founder. Table 2 displays an example of trimmed-
haplotype frequencies, calculated as described above, for
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Table 2

Trimmed-Haplotype Table and Category Frequencies

CATEGORY

HAPLOTYPEa NO. OF GENERATIONSb

A B Dis C E F 100 200 300 LEc

1 1 1 D 1 1 1 .389 .173 .075 .000
2 1 1 D 1 1 0 .089 .083 .060 .001
3 0 1 D 1 1 1 .081 .079 .055 .001
4 0 1 D 1 1 0 .018 .038 .044 .005
5 1 1 D 1 0 X .104 .116 .099 .006
6 X 0 D 1 1 1 .079 .090 .074 .006
7 0 1 D 1 0 X .021 .053 .073 .026
8 1 1 D 0 X X .102 .133 .133 .032
9 X 0 D 1 1 0 .018 .043 .058 .026
10 0 1 D 0 X X .021 .061 .097 .128
11 X 0 D 1 0 X .021 .061 .097 .128
12 X 0 D 0 X X .021 .070 .130 .640

a 0, 1, D, and X are as defined for table 1.
b Since ancestral founder.
c LE = linkage equilibrium, after many generations.

a haplotype of length 1 cM, measured from marker A
to marker F. For the examples in table 2, all interlocus
distances are set equal to one-fifth of the total haplotype
length, including the distance from the disease locus to
its flanking markers. The frequency of each ancestral
allele is .2.

Among individuals who carry a disease allele de-
scended from an ancestral founder 100 generations in
the past, many also carry the entire surrounding ances-
tral haplotype over a region 11 cM wide (table 2, col-
umn 3). At 200 and 300 generations, most haplotypes
have been trimmed repeatedly in this region, and, after
a sufficiently long time, the distribution of trimmed-
haplotype frequencies conforms to the null hypothesis.
Although we have shown this as linkage equilibrium for
illustrative purposes, in many human populations,
markers as tightly linked as those of table 2 are not
found in equilibrium, even in the absence of a disease
locus. Therefore, the null-hypothesis distribution of
trimmed haplotypes in a real test may be quite different
from that in column 6 of table 2. It is usually not prac-
tical to model category frequencies explicitly for the null
hypothesis; rather, we draw a control subsample from
observed data.

Because we cannot observe elapsed time since the in-
troduction of the disease allele, the number of genera-
tions, g, must be either obtained from other sources or
estimated as part of the statistical procedure. We have
found that, for large values of g, the ancestral hypothesis
becomes indistinguishable from the null hypothesis, and
so simultaneous estimation of g within the procedure
nullifies the trimmed-haplotype test. Instead, we might
use a conjecture based on work of scholars in the history
of the relevant population (e.g., Relethford and Craw-

ford 1995; Laan and Pääbo 1997). In the absence of
such evidence, an estimate of g can be obtained from
marker-to-marker LD in the observed sample. This cal-
culation would use all possible pairs of markers in the
chromosomal region and their corresponding distances.
Although these pairs would not be statistically inde-
pendent, this is a small difficulty compared with the
assumption that marker age is indicative of the age of
the disease locus. Nonetheless, on the basis of a marker-
to-marker analysis of the Irish Sample of High-Density
Schizophrenia Families, we estimate g to be ∼230 �

generations in the Irish population, leading to pre-20
served regions 1–2 cM in length (Kendler et al. 1998).
Fortunately, the parameter g, as long as it is within
reasonable bounds, does not play a crucial role in the
significance test.

Marker Mutation

The model above applies where breakup of haplotypes
occurs solely from recombination. However, with min-
ute chromosomal regions full of microsatellite markers
that have unknown and possibly high mutation rates
(Weber and Wong 1993), mutation effects need to be
represented in the trimmed-haplotype table. Marker mu-
tation has a less drastic effect than does recombination
on the haplotype surrounding a disease locus. Recom-
bination at a marker near the disease locus obliterates
evidence of a founder throughout the recombinant re-
gion, whereas a mutation affects only the marker itself.
Therefore, if mutation is also considered, the presence
of ancestral alleles at outside markers carries weight,
even in the presence of an inside nonidentity.

Recombination replaces alleles in proportion to allele
frequencies, but marker mutation produces a different
pattern. According to the “stepwise-mutation model”
for microsatellite markers (Kimura and Ohta 1978), the
characteristic result of a single mutation would be a
haplotype with alleles preserved at all markers except
the mutated marker, at which the allele would be one
repeat longer or one shorter than the former allele. Ap-
plying this model, we add a mutation subcategory to
each trimmed-haplotype category that arises from re-
combination. The trimmed-haplotype category posi-
tions of haplotypes in mutation subcategories are ele-
vated from the positions they would occupy under a
recombination-only model, because we now take into
account ancestral alleles in regions that were formerly
ignored as recombinant.

Although unequal mutation rates have been dem-
onstrated for different kinds of markers (Chakraborty
et al. 1997), it is probably unrealistic to attempt an
estimation of separate rates, in most cases. Therefore,
let us assume the same mutation rate for all markers in



MacLean et al.: Trimmed-Haplotype Test 1067

a region and statistically independent mutation events.
At a single marker with mutation rate m per generation,

. An ob-gPr(no mutation in g generations) = (1 � m)
served haplotype with k markers displaying the ances-
tral haplotype except for an allele one repeat longer or
one shorter than the corresponding ancestral allele, falls
into a special trimmed-haplotype category with adjusted
trimming probability Pr(k,n,m) = Pr(k,n)k[1 � (1 �

. This category may be shared by hap-g g(k�1)m) ](1 � m)
lotypes with apparent mutations at different markers,
because the adjustment is independent of location
within the trimmed haplotype. To compensate for mu-
tation subcategories, we must adjust the trimming prob-
ability for the corresponding category without apparent
mutations by a factor of . Mutation is not lim-gk(1 � m)
ited to a single event within the preserved chromosomal
region, but haplotypes with multiple mutations would
have category frequencies too small to be useful. There-
fore, in practice, for the rare cases of multiple apparent
mutations, we use only the nearest marker that meets
the criteria as a mutation and consider the farther ones
to be recombinations. Under the null hypothesis, in
which similarity to the ancestral haplotype is fortuitous,
the history of recombinations and marker mutations is
irrelevant. We simply use the haplotypes that appear in
the control sample that meet the particular category
criteria.

Inclusion of mutation does not seriously affect a
trimmed-haplotype table of only a few markers, but if
as many as 10 markers on each side were examined,
exclusion of mutation could mean that important sim-
ilarities would be ignored. Thus, in treating enormous
haplotypes (in the analysis of SNPs, for example), mu-
tation becomes more important.

Genotyping Errors

Genotyping errors are resolved as well as possible before
trimmed-haplotype analysis, and unresolvable errors are
usually coded 0 or blank. Rather than suppressing all
haplotypes that contain blank alleles—often several per-
cent of the sample—we treat them somewhat similarly
to recombinations. Because we cannot determine
whether a missing allele is the ancestral allele, we also
cannot know whether the outside markers are relevant
to the ancestral hypothesis. We follow the conservative
procedure and classify the haplotype as though the miss-
ing allele were a crossover. In this case, genotyping errors
have the effect of shortening the preserved region of
ancestral haplotype and shifting haplotypes to lower po-
sitions in the trimmed-haplotype table. In the unknown
cases in which the missing allele is actually the ancestral
allele, outside ancestral alleles are ignored and some in-
formation is lost. However, this method at least allows

us to calculate the correct adjustment in category prob-
ability, regardless of whether reclassification was really
necessary.

Let us call the error rate l. In the case of a single
marker, the trimming probability is increased by the
probability that the ancestral allele is actually preserved,
but the marker has an error: Pr(D0,l) = Pr(D0) �

. The complimentary probability of preserva-Pr(D1)l
tion is reduced by the same amount: Pr(D1,l) =

.Pr(D1)(1 � l)
Extension to the general case, for n markers with k

preserved ancestral markers, followed by a blank allele
at marker Mk�1, is straightforward. Although treatment
could easily be adapted to individual marker error rates
if separate estimates exist, the prospect of reliable in-
dividual error-rate estimates seems remote. Therefore,
let us assume the same independent error rate for all
markers. All the k preserved ancestral alleles must avoid
error, so that is a common factor. In addition,k(1 � l)
the error at marker Mk�1 reduces the trimmed-haplotype
category of any haplotypes that have ancestral alleles
between markers Mk�1 and Mn. Thus, Pr(k,n,l) = (1 �

.k nl) [Pr(k,n) � lS Pr(i,n)]i=k�1

Uncertain Marker Location

The trimmed-haplotype calculations presented above are
based on precise marker locations, whereas in practice
we may need to accommodate some uncertainty. Because
marker locations generally cannot be determined by
linkage analysis more accurately than 1 or even 2 cM
(Jorde 1995), for the dense markers required by LD anal-
ysis, location must be established by physical mapping.
However, physical mapping is still quite expensive, al-
though technology improves continuously. Therefore, at
least for now, many problems must be attacked without
knowledge of exact marker locations.

In the worst case we may need to fall back on a
nonparametric measure of similarity between each cat-
egory and the ancestral haplotype. For example, we
could represent similarity of each trimmed haplotype to
the ancestral haplotype by recording the number of an-
cestral alleles they share, as shown in table 3. This shar-
ing score conforms to our intuitive notion that the hap-
lotypes most similar to the ancestral haplotype are those
most likely to have descended from it, but the score
requires no specific population-genetic assumptions.

Of course, such a score may be a poor representation
of the trimming process. The problem can be mitigated
if we have partial information that can be used. A semi-
parametric score might be provided by trimming prob-
abilities calculated with assumed locations, such as the
equally spaced lattice distribution used in the example
for table 2. If distances between certain markers in the
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Table 3

Trimmed-Haplotype Category Similarity Scores

CATEGORY

HAPLOTYPEa

SIMILARITY

SCOREbA B Dis C E

1 1 1 D 1 1 4
2 1 1 D 1 0 3
3 0 1 D 1 1 3
4 0 1 D 1 0 2
5 X 0 D 1 1 2
6 1 1 D 0 X 2
7 X 0 D 1 0 1
8 0 1 D 0 X 1
9 X 0 D 0 X 0

a 0, 1, D, and X are as defined for table 1.
b Measured by the number of alleles shared with ancestral

haplotype.

haplotype were known, they could be used as anchors
for assumed locations of the remaining markers.

Observed Haplotypes

The observations of the trimmed-haplotype method con-
sist of haplotypes, usually two for each pedigree founder
of each pedigree in the sample. Parent-offspring triads
have four pedigree-founder haplotypes observed in each
family. In complex pedigrees, there may be many more
than four pedigree-founder haplotypes. At the other ex-
treme, a pedigree consisting only of a pair of affected
sibs, without the parents’ being genotyped, may display
as few as two haplotypes, if the sibs share both.

The search for disease-susceptibility loci often begins
with linkage analysis in chromosomal regions through-
out the genome. Because investigators attempt to weed
out false positives by intensive genotyping, by the time
linkage has been established in a chromosomal region,
the sample has usually been genotyped at many markers
throughout the region. With this much information, of-
ten all pedigree-founder haplotypes in the sample are
unique; that is, every pair of haplotypes differs some-
where in the large chromosomal region, although in the
minute region of putative LD there may be many du-
plicates. The entire region, rather than just the putative
ancestral subregion, is used to determine the inherited
haplotype. Recombinations often occur between the
generations observed in sample pedigrees. Outside the
ancestral subregion, recombinations do not interfere
with the trimmed-haplotype analysis. Even within the
small ancestral region, unless the markers flanking the
disease-susceptibility locus are affected, the trimmed-
haplotype pattern could usually be inferred. However,
trimmed-haplotype tests usually use ancestral regions
small enough that recombinations within them are rare
and can be discarded without serious loss.

An integral part of the trimmed-haplotype method

consists in partitioning the sample into test and control
subsamples (often called “cases” and controls, but
“cases” would be confusing usage in our discussion be-
cause many nonancestral cases of affection occur under
the null hypothesis). A control subsample is required
because we have no theoretical trimmed-haplotype cat-
egory frequencies under the null hypothesis. Since the
markers of such a small region are tightly linked, we
cannot rely on the product of allele frequencies to pro-
duce haplotype frequencies. An investigator might ob-
tain a control sample from an outside source, but
matching has proved problematical in LD analysis, and
a control subsample drawn from the same sample as
the test subsample is usually preferable (Falk and Ru-
binstein 1987).

In the TDT, the test subsample consists of transmitted
haplotypes, and the control subsample consists of non-
transmitted haplotypes, with the two subsamples being
of equal size. For multiplex pedigrees, partition of hap-
lotypes into test and control subsamples is somewhat
more complicated, but the same principle applies. For
example, we might select as controls all haplotypes that
appear in pedigrees but that are not transmitted to any
affected members. In the Appendix, we describe a
method of treating multiplex pedigrees that provides a
probabilistic assignment based on a parametric segre-
gation model, which was determined previously. The
haplotype-based posterior probability of linkage
(HBPPL) can be used as a weight for the corresponding
haplotype in the trimmed-haplotype table. Every hap-
lotype is entered in both subsamples: in the test sub-
sample with weight HBPPL and in the control with
weight . Alternatively, HBPPL can be used1 � HBPPL
as a criterion by which haplotypes with less than a spec-
ified value are assigned to the control subsample, and
those with a greater value to the test subsample. Under
these methods, the test and control subsamples generally
do not have the same size.

Let us denote qi as the observed frequency in category
i of the test subsample and pi as the observed frequency
of the controls. Suppose that a certain proportion of
haplotypes, a, contain a disease-susceptibility gene in
the present chromosomal region, whereas the remain-
der, , occur in the absence of linkage. Parameter1 � a

a accounts for what is called “locus heterogeneity.” The
frequency of haplotypes in category i in the absence of
linkage is called vi. Even among those who carry a dis-
ease-susceptibility gene, only a proportion d have in-
herited it from a particular ancestral founder. Parameter
d accounts for what is called “allelic heterogeneity.” We
distinguish “ancestrally derived” haplotypes, with cat-
egory frequency ui, from haplotypes that carry a disease
allele in the given region but have inherited it from
another ancestor, called “causal” haplotypes, with cat-
egory frequency wi. Test subsample category frequency
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qi derives from all three sources—ancestral, causal, and
nonlinkage: . Al-q = dau � (1 � d)aw � (1 � a)vi i i i

though the distribution of wi might be somewhat dif-
ferent from that of vi, causal haplotypes should not be
biased with respect to the ancestral haplotype of the
present trimmed-haplotype table. Therefore (especially
since we have little chance of distinguishing the two,
anyway), we assume that causal haplotypes have ap-
proximately the null distribution, so that

q ≈ dau � (1 � da)v . (6)i i i

The Statistical Test

According to the Neyman-Pearson lemma, the most
powerful statistic for tests of fully specified hypotheses
is the log-likelihood ratio. In our case, in which the ob-
servations can be sorted into m trimmed-haplotype cat-
egory frequencies with a multinomial distribution, the
Neyman-Pearson statistic has the form

m

G = ln [E (q )/E (q )]q , (7)� A i 0 i i
i=1

where qi is the observed test subsample frequency of
trimmed-haplotype category i, EA(qi) is its expected value
under the alternative hypothesis, and E0(qi) is the ex-
pected value under the null hypothesis.

We usually would not have a priori values for EA(qi)
and E0(qi), so they must be estimated, either from the
data or from the trimmed-haplotype model. More than
one formulation of the likelihood-ratio (LR) test is pos-
sible. The most familiar form uses category frequencies
estimated from the data themselves. We call this general-
purpose LR statistic LR(est). We estimate EA(qi) with
the category frequency observed in the test subsample,

, and the null hypothesis value . Sta-E (q ) = q E (q ) = pA i i 0 i i

tistic G is not defined when either orE (q ) = 0A i

, the maximum-likelihood (ML) estimateE (q ) = 00 i

when the corresponding observed category is empty. To
avoid 0, we employ an alternative estimate of E(qi). We
solve for a small constant, e, that yields Pr(x 1 0Fe) =

. That is, we estimate the category fre-Pr(x 1 1F1/n)
quency that produces the probability of finding 10
where an empty category was observed, equal to the
probability of finding 11, given the ML category fre-
quency with one observation. The value is approxi-
mately .e = 1/3n

LR(est) does not explicitly use the model on which
trimmed-haplotype analysis is based. Therefore, LR(est)
responds proportionally to any deviation between the
test and control subsamples, positive or negative. To
exploit the model of the trimming process, we use it to

generate the expected value under the alternative hy-
pothesis in a statistic called LR(trim). We define a cat-
egory-similarity score, si, that measures similarity be-
tween haplotypes in category i and their putative
ancestor. The trimming probability is the appropriate
similarity score when we have enough information to
perform the calculations. If the alternative hypothesis
is true, including the specific model we use to calculate
the trimming probability, then the expected value of ui

equals si, and from equation (6), E (q ) = das � (1 �A i i

. Since our most uncontaminated informationda)E (v )A i

about the null hypothesis population comes from the
control subsample, EA(vi) is estimated by pi. Therefore,
under the alternative hypothesis the expected value is
estimated by , whereas, underE (q ) = das � (1 � da)pA i i i

the null hypothesis, the expected value is estimated sim-
ply by .E (q ) = p0 i i

If the model of disequilibrium we employ in LR(trim)
is correct, or nearly correct, LR(trim) should have a
considerable advantage over LR(est). However,
LR(trim) depends on several parameters that we may
not be able to estimate accurately—locus and allelic
heterogeneity, as well as the number of generations
elapsed since the founding ancestor and the marker mu-
tation rate. Under poor assumptions, the parametric ap-
proach may perform worse than LR(est). Either for-
mulation is valid; the issue depends entirely on statistical
power.

Bootstrap Significance Level

Because sampling distributions of the trimmed-haplo-
type test may be quite complicated, we calculate signif-
icance levels for the trimmed-haplotype statistic, using
random-permutation replications (Efron and Tibshirani
1993). The method falls under the general heading of
bootstrap techniques, a class of methods to assess sta-
tistical significance that avoid our having to make as-
sumptions regarding the asymptotic behavior of statis-
tics (Efron 1982). To avoid being misled by the presence
of linkage alone, we wish to conditionthe distribution
on whatever linkage signal is present in the data. There-
fore, replicates are formed by the shuffling of haplotype
designations among pedigrees while patterns of in-
heritance are kept intact. The assignment of pedigree-
founder haplotypes to the test and control subsamples
remains constant, but their assignment to trimmed-hap-
lotype categories varies. The simulated statistic,

R = q ln [E (q )/E (q )] , (8)�h ih A ih 0 ih

calculated over many replications, provides a distribu-
tion against which the observed statistic, G, can be mea-
sured. Large values of G occur when high observed-
category frequencies in the test sample coincide with a
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Table 4

Bootstrap Calculations for
Haplotypewise Significance Level

SAMPLE

REPLICATION SCORE

FOR ANCESTRAL

HAPLOTYPEa

1 1 1 2 2 1 2 2

Observed (G) 1.4 4.8 .8 2.6
Replicate:

R1 .2 2.4 1.1 .7
R2 1.9 4.1 .7 1.4
R3 1.1 .9 1.7 4.6
R4 3.7 2.8 2.1 3.4
R5 1.4 2.4 2.5 2.1
R6 2.8 3.7 1.7 2.4
R7 3.5 5.0 4.2 2.1
R8 .7 2.9 .6 4.9
R9 2.1 2.0 1.0 1.9
R10 1.3 2.7 1.1 2.5

a Scores exceeding the observed score
are underlined.

Table 5

Bootstrap Calculations for Global
Significance Level

SAMPLE

ANCESTRAL

HAPLOTYPEa

1 1 1 2 2 1 2 2

Observed (G) 1.4 4.8 .8 2.6
Replicate:

R1 .2 2.4 1.1 .7
R2 1.9 4.1 .7 1.4
R3 1.1 .9 1.7 4.6
R4 3.7 2.8 2.1 3.4
R5 1.4 2.4 2.5 2.1
R6 2.8 3.7 1.7 2.4
R7 3.5 5.0 4.2 2.1
R8 .7 2.9 .6 4.9
R9 2.1 2.0 1.0 1.9
R10 1.3 2.7 1.1 2.5

a The best haplotype score for each rep-
lication is underlined, and those exceeding
the best observed score are also shown in
boldface type.

predicted excess of trimmed haplotypes over controls.
In replicate samples under the null hypothesis, qih has
the same distribution, on average, as pi, and any excess
is random. Therefore, the “achieved significance level”
of a test is the rank order of G for the actual observed
sample, relative to the population of simulated samples
Rh.

Let us illustrate the construction of achieved signifi-
cance levels with a simplified example. Consider two
diallelic markers with the disease locus between them.
The sequence of marker haplotypes that are assigned
putative ancestral status runs through all four possible
haplotypes. For each analysis, we calculate the observed
statistic G and 10 replicates, R1–R10, as shown in table
4. We calculate the haplotype-specific significance level
for each putative ancestral haplotype by counting the
number of replications Rh that exceed G. In our ex-
ample, haplotype 1 1 has the achieved significance level
.6, haplotype 1 2 has significance level .1, haplotype 2
1 has significance level .8, and haplotype 2 2 has sig-
nificance level .3.

Repeated Analysis and Significance Level

The trimmed-haplotype method uses only one ancestral
haplotype in each trimmed-haplotype table. Except in
an attempt to replicate a specific finding from other data,
we would rarely have a particular ancestral haplotype
hypothesized beforehand. Several current LD methods
(Sham and Curtis 1995; Terwilliger 1995) treat the entire
set of alleles at a given marker locus simultaneously and
produce an overall significance level (extension to si-
multaneous treatment of multiple-marker haplotype
data is straightforward). The drawback to simultaneous
testing is that a true excess in one or a few haplotypes

may be confounded with many small differences, ran-
domly distributed between excess and dearth. In high-
density samples, haplotypes with too few transmissions
are probably not causally related to a disease-suscepti-
bility gene. The problem is especially acute among the
huge number of possible haplotypes of a region with
multiple, highly polymorphic markers. The trimmed-
haplotype method of treating all haplotypes of a given
set of markers consists in repeated testing of admissible
combinations of alleles at the markers. We may exclude
alleles with extremely low observed frequencies from the
admissible set, since they could not contribute very much
to high trimmed-haplotype scores anyway.

Alleles are not the only familiar uncertainty. In most
cases, the location of the disease locus cannot be spec-
ified precisely beforehand. Such uncertainties apply to
any method of LD analysis, and the usual solution is
to test all admissible locations in the chromosomal re-
gion, producing a map analogous to a multipoint link-
age map. A new trimmed-haplotype table must be con-
structed for each marker interval in which the disease
locus is hypothesized, and every location throughout
the chromosomal region generates a separate set of trim-
ming probabilities. We might also need to try haplotypes
of different sizes, from only two flanking markers to
larger chromosomal regions, searching for the most pos-
itive results among all these tests. Marker order is es-
pecially important to the trimmed-haplotype analysis,
because assignment to trimmed-haplotype categories
depends on the nearest recombination on both sides of
a putative disease locus. If the order of all markers is
not known with certainty, as often happens, we must
also repeat the analysis using marker combinations
compatible with the subset of markers of known order.
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Of course, type 1 errors would be inflated by this
repeated analysis and must be taken into account. Each
putative ancestral haplotype that is analyzed has a cor-
responding significance level. However, the sequence of
ancestral haplotypes analyzed for a given combination
of markers is highly correlated, since alleles are cycled
on and off the putative ancestral haplotype one at a
time. Thus, it would be highly inaccurate to use any
sort of Bonferroni correction to adjust for multiple test-
ing. Instead, we use an extension of the bootstrap
method by recording the best haplotype for each ran-
domized replication. Then the best-observed haplotype
of the actual sample is sorted in among the best repli-
cate-sample scores. Its rank order in this select set is the
global significance level of the best putative ancestral
haplotype over all haplotypes for a particular combi-
nation of markers. To extend our example from table
4 above, we use the same data to calculate row maxima,
as shown in table 5. Then we count the number of
replications in which the row maximum exceeds the
maximum for the observed data. In our example there
are two such replications, so the global significance level
is .2.

Under the null hypothesis, the distribution of
trimmed-haplotype scores depends somewhat on the
frequencies of the putative haplotype and those closely
related to it. Therefore, to compare separate putative
haplotypes, the values must be standardized. The ideal
way to achieve this would be to transform the procedure
into the P-value domain, which generates a uniform
scale (Efron and Tibshirani 1993). However, for this
method, each replicate would require its own set of
replicates to produce its significance level. This would
square the computational effort required and would
probably be infeasible. A more economical alternative
is to standardize the trimmed-haplotype scores them-
selves. Although, in general, the distribution of
trimmed-haplotype scores is skewed, we have found in
simulations that adjustment by mean and variance pro-
duces distributions with no bias in favor of any partic-
ular haplotype under the null hypothesis. That is, the
best trimmed-haplotype score is distributed randomly
among all haplotypes, in their role as putative ancestral
haplotype, without regard to haplotype frequencies.

Effect of Heterogeneity

The trimmed-haplotype method is designed especially
for the case in which haplotypes that bear the disease
gene account for a small fraction of all observed hap-
lotypes. Heterogeneity is not treated explicitly in LR(est),
but it does appear in LR(trim). We usually would not
have an accurate estimate of the heterogeneity param-
eters a and d, describing locus and allelic heterogeneity,
respectively. However, it turns out that, as long as their
product is small, precise estimates of d and a are not

essential. To see why, recall from the Taylor series that
in a tight neighborhood of . Theln (1 � x) ≈ x x = 0

LR(trim) statistic can be written

m

G = q ln [(das � (1 � da)p )/p ]� i i i i
i=1

= q ln [da(s /p � 1) � 1] ,� i i i

so that, when da is small, . Since daG ≈ da� q (s /p � 1)i i i

is common to all categories, and the same is true in all
replications, , parameter daR ≈ da� q (s /p � 1)h ih i ih

would cancel out of the achieved significance-level cal-
culation. Although we do not actually make the substi-
tution, this approximation shows that no small value of
da could affect the trimmed-haplotype test very much.

In a complex disease, da must often be small. Many
haplotypes belong to unaffected individuals; others
come from sporadic cases or from affection caused by
loci in other regions. Small values of a could be expected
in a disease such as schizophrenia, in which linkage has
been reported and replicated in 11 chromosomal regions
(Crow and DeLisi 1998). If most of these regions ac-
tually are linked, the average a value must be small.

In some cases, we might have a degree of evidence
about a from the admixture model of linkage analysis
(Smith 1963), but there is usually no evidence about d

except from trimmed-haplotype analysis itself. The
trimmed-haplotype test need not be confined to a single
putative haplotype. If different ancestral haplotypes sur-
rounded the disease-susceptibility gene in separate foun-
ders, each may give rise to moderately elevated
trimmed-haplotype scores. We can use the same set of
replication scores to assess the significance level of not
only the best observed haplotype but also the second-
best and subsequent scores. For example, a test for the
second-best haplotype of the marker combination can
be demonstrated on the data of tables 4 and 5, although,
in a real study, we would not search for more ancestral
haplotypes if the most outstanding one had significance
level of only .2. However, for illustrative purposes, con-
sider table 6. Haplotype 2 2 has the second-highest value
of G at the marker combination. Among the second-
highest scores of all replications, four exceed the second-
highest value of G, so that the achieved significance level
of a second ancestral haplotype is .4. In a real study,
we would search for a break-point at which the first n
observed P values are more extreme than their corre-
sponding replicates and subsequent observed values fall
into the middle of the corresponding replicate distri-
butions. Examination of the alleles common to these n
best-scoring haplotypes might indicate something of the
relevant history. Haplotype clusters that share alleles
around the disease-susceptibility locus may descend
from early recombinations in the same ancestral hap-
lotype. On the other hand, haplotypes that differ even
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Table 6

Bootstrap Significance Level for Second-
Best Haplotype

SAMPLE

ANCESTRAL

HAPLOTYPEa

1 1 1 2 2 1 2 2

Observed (G) 1.4 4.8 .8 2.6
Replicate:

R1 .2 2.4 1.1 0.7
R2 1.9 4.1 .7 1.4
R3 1.1 .9 1.7 4.6
R4 3.7 2.8 2.1 3.4
R5 1.4 2.4 2.5 2.1
R6 2.8 3.7 1.7 2.4
R7 3.5 5.0 4.2 2.1
R8 .7 2.9 .6 4.9
R9 2.1 2.0 1.0 1.9
R10 1.3 2.7 1.1 2.5

a The second-best haplotype score for
each replication is underlined, and those
exceeding the second-best observed score
are also shown in boldface type.

Figure 1 Sample pedigree used in table A1

in the nearest flanking markers probably descend from
different ancestral founders.

The worst possibility for heterogeneity is that a large
number of separate disease mutations might have arisen
over time, so that even in a large sample, a given mu-
tation would manifest itself in only one or two pedi-
grees. Although this has proved not to be the case for
relatively simple diseases, such as cystic fibrosis (Ram-
say et al. 1993), congenital chloride diarrhea (Höglund
et al. 1995), and Werner syndrome (Goddard et al.
1996), there is no guarantee that it is not true of com-
mon, complex disorders. There are known instances of
loci at which multiple independent mutations have
arisen; for example, b-hemoglobin (Vogel and Motulsky
1997, p. 313). This presents a hopeless situation to the
trimmed-haplotype method, since the haplotypes would
be distributed approximately according to null-hypoth-
esis category frequencies, even though many may have
arrived by an ancestral route. Although evidence for
linkage may well be strong, any type of LD analysis
would probably fail in this case.

Operational Characteristics

We have performed a series of simulation experiments
to benchmark the performance of the trimmed-haplo-
type method. Full results are presented in a companion
paper (R.B. Martin, C.J. McLean, R.E. Straub, and K.S.
Kendler, in preparation). In brief, results show that the
trimmed-haplotype method produces the proper type 1
error rate under the null hypothesis and is not misled

by the presence of intense linkage or even LD, as long
as it is not correlated with the putative ancestral hap-
lotype. We have also performed a series of statistical
power simulations under a variety of alternative hy-
potheses, including locus and allelic heterogeneity, var-
ious sizes of ancestral haplotypes, and various pedigree
structures. For comparison, we included two commonly
used LD methods, ETDT (Sham and Curtis 1995) and
DISMULT (Terwilliger 1995). In general, the trimmed-
haplotype method performed well.

Software

The trimmed-haplotype test has been implemented in a
computer package written by R. B. Martin. The pro-
gram, called TRIMHAP, is freely available to all inves-
tigators from the TRIMHAP World Wide Web site.

We have designed the package to operate along the
same lines as LINKAGE, offering a choice of options
such as parametric or nonparametric analyses, with the
whole process controlled from a shell-like interface. We
assume that the user supplies a grid of markers covering
some chromosomal region and has constructed haplo-
types using software such as GENEHUNTER. In the
first step of TRIMHAP, the user is asked to define a
subset of markers that are feasible as ancestral haplo-
types, and only markers in this subset are scanned. The
user then defines the number of markers in the putative
ancestral haplotype and may choose to fix some or all
of them. If an ancestral marker locus is fixed, the cor-
responding allele may be fixed or left free, so that all
alleles are tested. The location of the disease locus
within the ancestral haplotype can also be specified or
left to vary.

TRIMHAP next examines all combinations of mark-
ers and alleles compatible with the above restrictions,
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Table A1

Probabilities of All Potential Disease-Allele Configurations

Configuration

Parents Offspring Probabilities

1 2 3 4 1 3 1 4 2 3 Priora Likelihoodb Jointc

1 d d d d d d d d d d .960 596 .000 376 .267
2 D d d d D d D d d d .009 703 .092 198 .662
3 d D d d d d d d D d .009 703 .000 141 .001
4 d d D d d D d d d D .009 703 .002 822 .021
5 d d d D d d d D d d .009 703 .004 610 .033
6 D D d d D d D d D d .000 098 .018 816 .002
7 D d D d D D D d d D .000 098 .069 120 .005
8 D d d D D d D D d d .000 098 .112 896 .008
9 d D D d d D d d D D .000 098 .000 576 .000
10 d D d D d d d D D d .000 098 .001 728 .000
11 d d D D d D d D d D .000 098 .018 816 .002
12 D D D d D D D d D D .000 001 .007 680 .000
13 D D d D D d D D D d .000 001 .023 040 .000
14 D d D D D D D D d D .000 001 .046 080 .000
15 d D D D d D d D D D .000 001 .003 840 .000
16 D D D D D D D D D D .000 000 .005 120 .000

a High-risk allele frequency, .q = .01
b Penetrances, , , .f(DD) = .80 f(dD) = .40 f(dd) = .02
c Normed.

to construct a sequence of ancestral haplotypes to an-
alyze. If map order is known, only contiguous markers
are scanned; if partially unknown, all admissible com-
binations, subject to user specifications, are examined.
Two filters are used to reduce combinations. The user
can specify a maximum span in centimorgans for the
putative ancestral haplotype and can also set a mini-
mum allele frequency for ancestral alleles.

Once an ancestral haplotype is chosen, TRIMHAP
determines identity by descent within the pedigree. For
each haplotype in the sample, a haplotype-sharing score
is calculated. Either the trimming probability or the
number of alleles in common with the putative ancestral
haplotype are calculated, at the user’s option. TRIM-
HAP determines the category of each haplotype, adds
it to the trimmed-haplotype table, and constructs the
sum of haplotype-sharing scores over all categories. Em-
pirical P values are calculated by use of a rapid hap-
lotype-permutation scheme. The chromosomal region is
scanned over the sequence of putative ancestral hap-
lotypes specified, and the whole process is replicated to
construct global empirical P values.
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Appendix

Haplotype Analysis in Multiplex Pedigrees

Parametric treatment of pedigrees requires an assumed
segregation model. Although segregation models of com-
plex diseases are rarely known, linkage analysis often
offers support for one mode of inheritance over others.
Genetic software such as GENEHUNTER provides ML
marker haplotypes for all pedigree members, and a sim-
ple algorithm determines which parental haplotype is
inherited in each transmission throughout the pedigree.
We construct a probability for each possible disease-gene
configuration in a pedigree and then sum up, for each
pedigree-founder haplotype in turn, the probabilities of
all disease configurations in which the haplotype con-
tains the disease-susceptibility allele. This yields an
HBPPL that can be used as a weight for the correspond-
ing haplotype in the trimmed-haplotype table.

It might be helpful to consider a specific example,
shown in figure 1. Pedigree members A and B are parents
of the sibship C, E, and F, of whom two are affected.
Since only the two parents are founders of this pedigree,
there are four haplotypes to consider. Although these
may be multiple-marker haplotypes, let us label them
simply 1, 2, 3, and 4, disallowing recombination within
a haplotype among the transmissions of this family. In-
tuitively, haplotype 1 in figure 1 gives the strongest con-
tribution to affection since it is passed to both affected
offspring. Haplotype 4 would probably be ranked next,
since it is passed to an affected offspring only, whereas
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Table A2

Summation for HBPPL from Configuration Probabilities in Table A1

CONFIGURATION

DISEASE ALLELE
JOINT

PROBABILITY

HBPPL

1 2 3 4 1 2 3 4

1 d d d d .267
2 D d d d .662 .662
3 d D d d .001 .000
4 d d D d .021 .020
5 d d d D .033 .033
6 D D d d .002 .000 .000
7 D d D d .005 .010 .000
8 D d d D .008 .000 .010
9 d D D d .000 .000 .000
10 d D d D .000 .000 .000
11 d d D D .002 .000 .000
12 D D D d .000 .000 .000 .000
13 D D d D .000 .000 .000 .000
14 D d D D .000 .000 .000 .000
15 d D D D .000 .000 .000 .000
16 D D D D .000 .000 .000 .000 .000

Total 1.0 .677 .000 .030 .043

haplotype 3 is passed to one affected and one unaffected
offspring. Haplotype 2 is passed only to an unaffected
offspring and would be ranked last. Let us quantify these
notions in table A1.

To include all configurations of disease alleles D and
d in a pedigree with n founders, we need to consider 22n

possible vectors, each of length 2n. If we assume inde-
pendence, the prior probability of a vector with m alleles
of type D and alleles of type d is m2n � m q (1 �

, where q is the frequency of D. For our example,2n�mq)
let us assume that , so that in table A1 the priorq = .01
probability of each vector is .01m .994�m.

Given the distribution of disease alleles among its hap-
lotypes, the pedigree likelihood depends on the trans-
mission of haplotypes throughout the pedigree, together
with the affection status of each pedigree member. Al-
though carriers of the disease mutation cannot be ob-
served, they have a probability of affection defined by
the penetrance of their genotypes, from the segregation
model: f(DD) for affected carriers of genotype DD,

for normal carriers of dD, etc. Let us assume1 � f(dD)
penetrances of , , andf(DD) = .80 f(dD) = .40 f(dd) =

. Since, under our segregation model, affection status.02
is independently assorted, the likelihood of a hypothet-
ical vector of disease alleles is the product of these pen-
etrances, one for each pedigree member. For example,
the first vector, d d d d, has likelihood .98 # .98 #

, whereas the second, D d d d,.02 # .02 # .98 ≈ .0004
has likelihood . The.60 # .98 # .40 # .40 # .98 ≈ .09
product of the prior probability and likelihood produces
the joint probability of each possible configuration, and,
since the list of 16 haplotype-configuration vectors is
exhaustive, these joint probabilities may be normed over
the table, to produce posterior probabilities.

Finally, to evaluate the HBPPL for each parental hap-
lotype, we sum the probabilities of vectors in which the
haplotype contains D. For each haplotype, this consti-
tutes one-half of the vectors, and there is considerable
overlap. HBPPLs do not sum to unity for a pedigree,
because of the overlap and because the sporadic disease
configuration d d d d does not contribute to any hap-
lotype. Note that the HBPPL values in table A2 corre-
spond well to our intuitive estimates from figure 1, with
haplotype 1 by far the most likely contributor, haplotype
2 quite implausible, and haplotypes 3 and 4 about
equally unlikely.
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Laan M, Pääbo S (1997) Demographic history and linkage
disequilibrium in human populations. Nat Genet 17:435–
438

Lazzeroni LC (1998) Linkage disequilibrium and gene map-
ping: an empirical least-squares approach. Am J Hum Genet
62:159–170

McPeek MS, Strahs A (1999) Assessment of linkage disequi-
librium by the decay of haplotype sharing, with application
to fine-scale genetic mapping. Am J Hum Genet 65:858–875

Ott J (1991) Analysis of human genetic linkage. 2d ed. Johns
Hopkins, Baltimore

Ramsay M, Williamson R, Estivill X, Wainwright BJ, Ho MF,
Halford S, Kere J, et al (1993) Haplotype analysis to de-

termine the position of a mutation among closely linked
DNA markets. Hum Mol Genet 2:1007–1014

Relethford JH, Crawford ME (1995) Anthropometric varia-
tion and the population history and genetic structure in Ire-
land. Am J Phys Anthropol 96:25–38

Sham PC, Curtis D (1995) An extended transmission/disequi-
librium test (TDT) for multi-allele marker loci. Ann Hum
Genet 59:323–336

Smith CAB (1963) Testing for heterogeneity of recombination
fraction values in human genetics. Ann Hum Genet 27:
175–182

Spielman RS, McGinnis RE, Evens WJ (1993) Transmission
test for linkage disequilibrium: the insulin gene region and
insulin-dependent diabetes mellitus (IDDM). Am J Hum Ge-
net 52:306–516

Stine OC, Xu J, Koskela A, McMahon FJ, Gschwend M, Frid-
dle C, Clark CD, et al (1995) Evidence for linkage of bipolar
disorder to chromosome 18 with a parent-of-origin effect.
Am J Hum Genet 57:1385–1394

Straub RE, MacLean CJ, O’Neill FA, Burke J, Murphy B, Duke
F, Webb BT, et al (1995) A potential vulnerability locus for
schizophrenia on chromosome 6p24-22: evidence for genetic
heterogeneity. Nat Genet 11:287–293

Terwilliger JD (1995) A powerful likelihood method for the
analysis of linkage disequilibrium between trait loci and one
or more polymorphic marker loci. Am J Hum Genet 56:
777–787

Vogel V, Motulsky AG (1997) Human genetics: problems and
approaches. Springer, Berlin

Weber JL, Wong C (1993) Mutation of human short tandem
repeats. Hum Mol Genet 2:1123–1128

Xiong NI, Guo S (1997) Fine-scale genetic mapping based on
linkage disequilibrium: theory and applications. Am J Hum
Genet 60:1513–1531

Zouali H, Hani EH, Philippi A, Vionnet N, Beckmann JS,
Demenais F, Froguel P (1997) A susceptibility locus for early-
onset non-insulin dependent (type 2) diabetes mellitus maps
to chromosome 20q, proximal to the phosphoenolpyruvate
carboxykinase gene. Hum Mol Genet 6:1401–1408


	The Trimmed-Haplotype Test for Linkage Disequilibrium
	Introduction
	Trimmed-Haplotype Table
	Trimming Probabilities
	Confounding Effect of Homozygosity
	Intervals with Multiple Nearest Recombinations
	Historical Changes in Trimmed-Haplotype Frequencies
	Marker Mutation
	Genotyping Errors
	Uncertain Marker Location
	Observed Haplotypes
	The Statistical Test
	Bootstrap Significance Level
	Repeated Analysis and Significance Level
	Effect of Heterogeneity
	Operational Characteristics
	Software
	References


